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HCCI Engine Combustion Phasing
Prediction Using a Symbolic-
Statistics Approach
Temporal dynamics of cyclic variation in a homogeneous charge compression ignition
(HCCI) engine near misfire is analyzed using chaotic theory methods. The analysis of
variation in consecutive cycles of CA50 (crank angle of 50% mass fraction fuel burnt) for
an n-heptane fueled engine is performed for a test point near the misfire condition. The
return map of the time series of CA50 cycle values reveals the deterministic and random
portions of dynamics near misfire occurring in an HCCI engine. A symbol-statistic ap-
proach is also used to find the occurrence of possible probabilities of the data points
under the same operating conditions. These techniques are then used to predict CA50 one
cycle ahead. Simulated data points in phase space have similar dynamical structure to
the experimental measurements. �DOI: 10.1115/1.4000297�
Introduction
HCCI engines are of interest due to their advantages over con-

entional spark ignition �SI� and compression ignition �CI� en-
ines. In particular, low emission levels in terms of NOx and
articulate matter, and high thermal efficiency of these engines,
re beneficial �1�. Two main concerns about this engine technol-
gy are: limited operation range and lack of any direct control on
gnition timing �2–4�. HCCI operating range is limited by the
nock limit at high load, and high cyclic variation at low load
5,6�. High cyclic variations are responsible for unstable combus-
ion and limited operating range of engines �7�. The reasons for
yclic variations are grouped in linear random, and deterministic
oupling between consecutive cycles, both of which were ana-
yzed using nonlinear and chaotic theory �8–10�. In this paper, the
erm deterministic is used when future states for some horizon of
he system can be calculated from the past values �11�.

Understanding the dynamics of HCCI combustion during the
igh cyclic variation operating conditions can potentially be used
o extend the operating range if there is deterministic structure
nherent between engine cycles. This structure can then be used to
redict future cycles, which can be incorporated in a control al-
orithm to influence ignition timing of HCCI engines �12�.

Cyclic variation in HCCI is highly dependent on the timing of
tart of combustion �SOC� �13�. Early combustion timing right
fter top dead center �TDC� tends to have low cyclic variations of
OC, while late HCCI combustion tends to have high cyclic
ariations �14�. The development of period doubling and bifurca-
ion in the experimental measurements of spark ignition engines
re investigated as the mixture is made leaner �15�. Their results
ndicate that there is a transition from stochastic behavior to a
elatively deterministic structure as � increases to very lean con-
itions. This seems to indicate that for lean mixture conditions,
ycles are related. In Refs. �16,17�, a method is proposed based on
symbolic approach to measure temporal irreversibility in time

eries, and a new method is introduced to detect and quantify the
ime irreversibility. In Ref. �18�, the symbolic method is analyzed
n such a way so that the symbolization is used to enhance the
ignal-to-noise ratio. Onset of combustion instabilities under lean
ixture conditions were studied using symbolic methods for ob-
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served in-cylinder pressure measurements in SI engines
�16,19,20�. In Ref. �21�, recent developments for applying a time
series analysis technique called symbolic time series analysis is
summarized. The observation of time irreversibility in cycle-
resolved combustion measurements of SI engines is discussed in
Ref. �12�, and the advantage of their model compared with linear
Gaussian random processes is presented. The transition dynamics
from conventional SI combustion to HCCI combustion is de-
scribed using nonlinear tools in Ref. �22�, where the cyclic com-
bustion oscillations occurring in transition between the SI and
HCCI mode are presented as a sequence of bifurcations in a low-
dimensional map. The sequential unstable cyclic combustion mea-
surements in the SI-HCCI transition are used to obtain the global
kinetic parameters �23�. This aids in discriminating between mul-
tiple combustion states, and to provide qualitative insight into the
SI-HCCI mode transition.

The main objective of this paper is to investigate the cyclic
variation of CA50 near the misfire limit in order to predict the
following cycles using the identified dynamics. The results have
specific implications for the control design used for stabilizing
unstable HCCI operations near the misfire condition. Since the
parameter CA50 is a good indicator of ignition timing �24�, it is
used in this work. Nonlinear and chaotic theory tools are used to
identify the inherent deterministic patterns of cyclic variation dur-
ing HCCI combustion. This paper is organized into sections with
the engine experimental setup described first. Then the return
maps are used to qualitatively observe the dynamical patterns near
the engine misfire limit. The return maps are a useful tool to
recognize the dependency of the current combustion cycle on pre-
vious ones. Then the deterministic structure inherent in the data
points is captured using a symbol-sequence approach. Joint prob-
ability distributions are calculated using the frequency histograms
obtained in the previous sections. Finally, those joint probability
estimators are used to predict the next cycle-ahead combustion
timings in the experimental data points. Adding appropriate noise
to the predicted values results in simulation results with similar
statistics to the experimental data.

2 Engine Setup
A schematic of the Ricardo Hydra Mark 3 single-cylinder en-

gine fitted with a modified Mercedes E550 cylinder head is shown
in Fig. 1. This engine is a typical spark ignition engine with four
valves per cylinder and a pent-roof combustion chamber shape.
The only modification to the cylinder head is the piezoelectric

pressure transducer mounted between an intake and exhaust valve.

AUGUST 2010, Vol. 132 / 082805-1
10 by ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



T
h
d
fl
p
M
r
E
e

s
w
d
t
p
m
r
T
c
t
s

i
t

3

v
t
p
v
t
i
p
p
t
m
i
c

P

B
C
D
V
I
E

0

Downlo
he intake air temperature can be controlled with a 600 W electric
eater, while the intake pressure is controlled with an externally
riven supercharger. Air flow rate is measured using a laminar air
ow meter mounted at the air inlet. Fuel is injected at the intake
ort of the engine. The fuel injection is done with a dSpace-
icroAutobox engine control unit �ECU�, which provides accu-

ate control of the injection timing, as well as the duration. This
CU also controls the spark timing, which is used during the
ngine warm up, but is turned off for HCCI combustion.

Some engine specifications are listed in Table 1. Cylinder pres-
ure is recorded 3600 times per crank revolution and processed
ith an A&D Baseline combustion analysis system �CAS� using a
egree based real time processor. At each engine cycle, the rela-
ive pressure signal from the piezoelectric pressure transducer is
egged to an absolute value of pressure measured in the intake
anifold. The pressure trace is then analyzed for combustion met-

ics such as indicated mean effective pressure �IMEP�, and CA50.
hese metrics are then logged for a duration of 6000 engine
ycles. All other parameters such as intake pressure and tempera-
ure are recorded at 10 Hz using the A&D Baseline DAC acqui-
ition system.

When collecting the data for a stationary engine condition �all
nputs held constant�, the engine is first warmed up so that both
he oil and coolant temperature remain constant.

Cycle-Ahead Prediction
The goal of this work is to predict CA50 using past and present

alues of CA50 for the engine operating near the misfire. To do
his, a variety of techniques are used. First, a chaotic analysis is
erformed on a test point at steady state with the coefficient of
ariation �COV� of IMEP �COVIMEP� of 35% for 6000 consecu-
ive engine cycles. Then, the first half of the data �cycles 1–3000�
s analyzed to find the probabilistic histogram while the second
ortion of data �cycles 3001–6000� is kept for validation. The test
oint is very close to complete misfire with many misfire combus-
ion events, and has only slightly larger engine torque than the

otoring condition. The severity of misfire is recognized by look-
ng at power or output torque, which is too low �5 Nm in this
ase�. A flowchart of cycle-ahead prediction based on chaotic

Fig. 1 Schematic of

Table 1 Configuration of the Ricardo single-cylinder engine

arameters Values

ore�stroke �mm� 80�88.9
ompression ratio 10
isplacement �L� 0.447
alves 4

VC �aBDC� 55
VO �aBDC� �70
82805-2 / Vol. 132, AUGUST 2010
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analysis results is illustrated in Fig. 2. This figure outlines the
analysis procedure in the next parts of the paper.

3.1 Return Maps. A return map can be used to observe the
structures inherent in a time series �22�. Here they provide a tool
to check the probable interaction between a cycle parameter and
its next consecutive cycle. For a random time series, consecutive
cycles are uncorrelated, and the return map shows an unstructured
cloud of data points gathered around a fixed point. With determin-
istic coupling between consecutive points, the return map shows
more structure such as dispersed data points about a diagonal line
�25�. In this paper, the analysis of HCCI engine data at an engine
speed of 1000 rpm, a manifold temperature of 44°C, and a
boosted manifold pressure of 94.5 kPa is performed. The return
map of all 6000 points of CA50 for this engine operating point is

experimental setup
the
Fig. 2 Flowchart: using chaotic tools for nonlinear prediction
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hown in Fig. 3. A relationship of combustion phasing between
he current cycle and the next cycle is shown in Fig. 3, and this
eturn map clearly shows a deterministic dependency on previous
ycles. Thus, to predict future cycles �for some prediction hori-
on�, previous combustion cycles are needed. However, the de-
ailed relationship between cycles is not apparent in Fig. 3, and it
ill be further discussed in the following sections. To characterize

he combustion dynamics behavior, the following functional form
or CA50 �at cycle i� using previous cycles is used:

CA50�i� = f�CA50�i − 1�,CA50�i − 2�, . . . ,CA50�i − L��
Chaotic tools such as return maps and symbol-sequence tech-

iques are employed to find the approximate function f and value
f L. Since a random time series with an unstructured cluster of
ata points tends to produce a high dimensional function f �22�,
he return map of Fig. 3 shows a relative low value of L. It can
lso be inferred from Fig. 3 that the function f is a nonlinear
unction.

3.2 Symbol-Sequence Analysis. In this section, the symbol-
equence method is used to extract information from the experi-
ental measurements of CA50. This method is used to detect the

atterns occurring in the data points and is useful when dealing
ith data with high measurement error or dynamic noise �15�.
sing symbol-sequence statistics requires converting the continu-
us phase space plots into discrete partitions �26�. Symbolization
ncludes generating discretized symbols from raw experimental
nalog signals. The symbolization method is based on partitioning
he original data points into finite discrete regions, and each re-
ion is then attributed to a particular symbolic value. The number
f possible symbols is called symbol-set size n �21,26,27�. After
ymbolization, each group of symbols form a finite-length tem-
late called the symbol sequence L. These symbol sequences con-
ist of consecutive symbols stepping through the whole data set
oint by point forming a new sequence. The sequence of symbols
arries some important information about the experimental mea-
urement dynamics �16�. The total possible number of sequences

is a combination of the symbol-set size n and symbol-sequence
ength L as follows: N=nL �16�.

The symbol-sequence approach also has tools to find inherent
tructure in experimental data points despite random-like appear-
nce. This is performed by observing if some patterns dominate
he time series since any Gaussian process, on average, would
esult in a flat histogram of the N symbol set �15�.

For the HCCI data near misfire n=8, eight equidistant partition-
ngs are used, which transforms the CA50 data to symbol series
rom 0 to 7. The data points, below the first bottom partition, are
ssigned to symbol 0, and those higher than the first bottom par-

ig. 3 CA50 return map for HCCI combustion under these
onditions: engine speed of 1000 rpm, Tman 44°C, Pman 94.5
Pa, � 2.34
ition are assigned to symbol 1 and so on. The relatively high

ournal of Engineering for Gas Turbines and Power
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number of eight partitions selected is used to obtain detailed in-
formation out of the original data set, despite that the observed
dynamics is obscured with noise �26,28�.

Using the symbol-sequence approach, much of the determinis-
tic structure inherent in the data can be captured �27�. To deter-
mine L, a joint probability distribution to predict the next cycle
occurrence using previous cycle information is useful. These fre-
quency histograms give the maximum likelihood probability of
the next cycle given the occurrence of previous cycles in the
whole time series. Then by comparing the one cycle-ahead pre-
dictions for different values of L, the optimal value of L can be
determined. These histograms also give the probabilistic function
for different data series. For the engine test point with return map
of Fig. 3, the optimal one-step ahead prediction is found using
current and two previous cycles �L=3�.

Symbol-sequence histogram for the first 3000 consecutive
cycles of CA50 data of Fig. 3 is shown in Fig. 4. The vertical axis
corresponds to normalized frequency of occurrence of this symbol
sequence, and the horizontal axis indicates the symbol-sequence
equivalent binary code. The symbol-set size n=8 and sequence
length L=3, so there are 83=512 possible sequences.

A large normalized frequency peak accompanied by some
smaller peaks in the sequence code histogram is apparent in Fig.
4, which indicates nonrandom sequences. The large peak occurs at
sequence 438 �symbol series 666�, which is three consecutive late
timing of ignition. Pattern number 433 and 118, which correspond
to sequence 661 and 166, respectively, are two of the main local
peaks in the diagram. These cases indicate that CA50 does not
stay in the late regions but oscillates between relatively early and
late CA50 angle regions. In addition, sequence codes 661 and 166
are among the possible sequences that the dynamics would pass
through before entering or leaving three consecutive symbols of
six. These local peaks indicate relative deterministic behavior of
CA50 combustion timing for the experimental case studied.

3.3 Nonlinear Prediction. Using the joint probability estima-
tor for the first half of the CA50 data �cycles 1–3000�, the simu-
lated behavior of the consecutive cycles of CA50 can be con-
structed using the deterministic part of the data captured by the
model. To obtain the predicted return map, the two previous CA50
values are used to predict the CA50 of the following cycle. The
predicted return map uses the validation data �CA50 cycles 3001–
6000�, and the resulting prediction is shown as large round sym-
bols in Fig. 5. The experimental CA50 data points are also plotted

Fig. 4 CA50 symbol-sequence histogram with „n=8, L=3… for
HCCI combustion cycles 1–3000 conditions as in Fig. 3
in Fig. 5 using small dot symbols in order to compare the predic-
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ion to the experiment. The prediction seems to capture the non-
inear dynamics of the real data without the random variation, as
hown in Fig. 5.

To simulate CA50 with statistics similar to the measured CA50,
random component is added to the simulated data points as

CA50�i� = f�CA50�i − 1�,CA50�i − 2�, . . . ,CA50�i − k�� + rand�i�
�1�

here rand�i� is a Gaussian random variable with zero mean and
variance of ��4% of maximum function f . The experimental

ata for cycles 3001–6001 in Fig. 6�a� is compared with the simu-
ation with noise for the same cycles in Fig. 6�b�.

The simulated return map in Fig. 6�b� has the general appear-
nce of the experimental data in Fig. 6�a�.

3.4 Validation. An 800 point portion of the validation data is
sed to check the prediction quality. The corresponding residuals
nd autocorrelation function are shown in Figs. 7 and 8,
espectively.

There is no obvious visible pattern in residuals error values in
ig. 7. This indicates no dependency between consecutive error
alues, thus, the model used to predict seems to capture the dy-
amics. To confirm that there is no dependency between consecu-
ive error values, the autocorrelation function for the residuals
prediction errors� are computed and shown in Fig. 8 for all the
000 CA50 validation data points. The confidence interval for
hese functions is shown by dashed lines. Ideally for an acceptable

odel, the correlation curves should fall between these lines �29�,
hich is the case in Fig. 8.

ig. 5 Comparing predicted CA50 return map to experiment
for validation data—cycles 3001–6000 for conditions as in Fig.

Fig. 6 Simulated CA50 return map includin

ments for HCCI combustion cycles 3001 to 600

82805-4 / Vol. 132, AUGUST 2010

aded 02 Jun 2010 to 171.66.16.96. Redistribution subject to ASME
4 Conclusions
Deterministic patterns in cyclic variation of ignition timing

�CA50� at one operating point near the misfire limit operation of
an HCCI engine are observed. The nonlinear cluster of consecu-
tive CA50 values near the misfire limit is illustrated in the return
map consisting of multiple different regions, which indicates non-
constant combustion timing near the misfire limit. Considerable
fluctuations in late ignition timings �CA50� occur since prior
cycles affect the current cycle. Nonrandom patterns of cyclic
variation of ignition timing under this specific operating condi-
tions emerge in symbol-sequence analysis as large peaks in the
symbol-sequence histogram. A joint probability estimator to pre-
dict one cycle ahead using two previous values is developed, and
on validation, data predicts combustion timing well. Adding ran-
dom noise with the appropriate magnitude results in a simulation
that looks similar to experimental measurements on a return map.
An autocorrelation of predicted-actual CA50 residual shows un-
correlated residuals �with 95% confidence�, which indicates that
the joint probability model is acceptable.

5 Future Work
For the engine operating condition tested, one cycle CA50 pre-

diction would be extremely useful in order to modify engine in-
puts �and thus modify combustion CA50� in order to avoid mis-
fire. Thus, the CA50 prediction coupled with a feedback control
could be used to extend HCCI combustion near the misfire.

Using these predicted deterministic points could be useful in
constructing the attractors that absorb the evolution of data points

oise compared with experimental measure-

Fig. 7 Prediction error between predicted CA50 values and ex-
perimental measurements for HCCI combustion—conditions as
in Fig. 3
g n

0—conditions as in Fig. 3
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nto finite regions. Expanding the analysis for more operating
oints and extending the prediction horizon is planned.
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omenclature
aBDC � after bottom dead center

CAS � combustion analysis system
CA50 � crank angle for 50% mass fraction burnt fuel

CI � compression ignition
COV � coefficient of variation
ECU � engine control unit
EGR � exhaust gas recirculation
EVO � exhaust valve opening

HCCI � homogeneous charge compression ignition
IMEP � indicated mean effective pressure

IVC � intake valve closing
Pman � intake manifold pressure

PRF � primary reference fuels
rpm � revolution per minute

SI � spark ignition
SOC � start of combustion
TDC � top dead center

Tman � intake manifold temperature
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